Fe-Zr (Iron-Zirconium)

H. Okamoto

The Fe-Zr phase diagram in [Massalski2] was updated by [1993Oka]. [1997Oka] showed the Fe-Zr phase diagram calculated by [1993Pel] and pointed out that the diagram may need further improvement because new experimental phase boundary data reported in [1993Oka] were not taken into account. Since then, [2001Jia] reported another calculated phase diagram (Fig. 1). Because of the controversy in

Table 1 Fe-Zr crystal structure data

Phase	Composition, at.% Zr	Pearson symbol	Space group	Struktur- bericht designation	Prototype
(δFe)	0-2	cI2	$Im\overline{3}m$	A2	W
(yFe)	0-0.5	cF4	$Fm\overline{3}m$	A1	Cu
(aFe)	0	cI2	$Im\overline{3}m$	A2	W
βFe_2Zr	26.5-27	hP24	$P6_3/mmc$	C36	MgNi ₂
αFe_2Zr	28-34.5	cF24	$Fd\overline{3}m$	C15	Cu ₂ Mg
FeZr ₂	66.7-67.2	tI 12	I4/mcm	C16	Al ₂ Cu
FeZr ₃	74.8-75.4	oC16	Cmcm	$E1_a$	BRe ₃
(BZr)	96-100	cI2	$Im\overline{3}m$	A2	W
(αZr)	100	hP2	$P6_3/mmc$	A3	Mg

earlier reports, [2002Ste] reexamined the Fe-Zr phase diagram by differential thermal analysis, electron probe microanalysis, x-ray diffraction, and metallography. The result is shown in Fig. 2. The most significant difference from all the other diagrams quoted above is the absence of β Fe₂Zr and the presence of Fe₂₃Zr₆. Thermodynamic modeling should be attempted with inclusion of this new result.

Fe-Zr crystal structure data are given in Table 1.

References

- **1993Oka:** H. Okamoto, Fe-Zr (Iron-Zirconium), J. Phase Equilibria, **14**(5), 1993, p 652-653
- **1993Pel:** A.D. Pelton, L. Leibowitz, and R.A. Blomquist, Thermodynamic Analysis of Phase Equilibria in the Iron-Zirconium System, *J. Nucl. Mater.*, **201**, 1993, p 218-224
- 1997Oka: H. Okamoto, Fe-Zr (Iron-Zirconium), J. Phase Equilibria, 18(3), 1997, p 316
- **2001 Jia:** M. Jiang, K. Oikawa, T. Ikeshoji, L. Wulff, and K. Ishida, Thermodynamic Calculations of Fe-Zr and Fe-Zr-C Systems, *J. Phase Equilibria*, **22**(4), 2001, p 406-417
- 2002Ste: F. Stein, G. Sauthoff, and M. Palm, Experimental Determination of Intermetallic Phases, Phase Equilibria, and Invariant Reaction Temperatures in the Fe-Zr System, *J. Phase Equilibria*, 23(6), 2002, p 480-494

Fig. 1 Fe-Zr phase diagram calculated by [2001Jia]

Fig. 2 Fe-Zr phase diagram experimentally determined by [2002Ste]